Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__first2(X1, X2)) -> first2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__first2(X1, X2)) -> first2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__first2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
ACTIVATE1(n__first2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(activate1(X1), activate1(X2))
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__first2(X1, X2)) -> first2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__first2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
ACTIVATE1(n__first2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(activate1(X1), activate1(X2))
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__first2(X1, X2)) -> first2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__first2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__first2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(activate1(X1), activate1(X2))
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__first2(X1, X2)) -> first2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

ACTIVATE1(n__first2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__first2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(activate1(X1), activate1(X2))
Used argument filtering: ACTIVATE1(x1)  =  x1
n__first2(x1, x2)  =  n__first2(x1, x2)
FIRST2(x1, x2)  =  x2
activate1(x1)  =  x1
n__from1(x1)  =  x1
cons2(x1, x2)  =  x2
n__s1(x1)  =  x1
first2(x1, x2)  =  first2(x1, x2)
from1(x1)  =  x1
s1(x1)  =  x1
0  =  0
nil  =  nil
Used ordering: Quasi Precedence: [n__first_2, first_2, nil]


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__first2(X1, X2)) -> first2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__first2(X1, X2)) -> first2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
Used argument filtering: ACTIVATE1(x1)  =  x1
n__from1(x1)  =  x1
n__s1(x1)  =  n__s1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPAfsSolverProof
QDP
                      ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)

The TRS R consists of the following rules:

first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__first2(X1, X2)) -> first2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
Used argument filtering: ACTIVATE1(x1)  =  x1
n__from1(x1)  =  n__from1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPAfsSolverProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPAfsSolverProof
                    ↳ QDP
                      ↳ QDPAfsSolverProof
QDP
                          ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(Y, n__first2(X, activate1(Z)))
from1(X) -> cons2(X, n__from1(n__s1(X)))
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__first2(X1, X2)) -> first2(activate1(X1), activate1(X2))
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.